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It has been suggested that for fluids in which the rate of strain varies appreciably over length scales of
the order of the intermolecular interaction range, the viscosity must be treated as a nonlocal property of the
fluid. The shear stress can then be postulated to be a convolution of this nonlocal viscosity kernel with the
strain rate over all space. In this Letter, we confirm that this postulate is correct by a combination of
analytical and numerical methods for an atomic fluid out of equilibrium. Furthermore, we show that a
gradient expansion of the nonlocal constitutive equation gives a reasonable approximation to the shear
stress in the small wave vector limit.

DOI: 10.1103/PhysRevLett.100.195901 PACS numbers: 66.20.�d, 02.70.Ns, 47.10.ab, 47.10.ad

It has been suggested that, in the linear regime, when the
variation in the strain rate of a fluid is of the order of the
range of intermolecular correlations, the local Newtonian
law of viscosity relating the shear stress to the strain rate
via a constant (local) viscosity will break down [1]. This
has certainly been observed in systems of confined fluids
where the strain rate can vary rapidly within several mo-
lecular diameters [2–6]. In the case of homogeneous un-
confined fluids, it has also been suggested that the solution
to this problem is to use a generalized form of the Navier-
Stokes equations, in particular, one that invokes a nonlocal
constitutive equation relating the shear stress to the strain
rate [1]. In this formulation, one expresses the shear stress
as a convolution of a nonlocal viscosity kernel with the
strain rate. It was earlier pointed out by Alley and Alder [7]
that such a kernel is just the Fourier transformed general-
ized transport coefficient in real space, and that such
transport coefficients can be computed via generalized
hydrodynamics [7–13]. While generalized hydrodynamics
has been used to compute these kernels in reciprocal space,
their applications have largely been limited to studying
liquid structure and dynamics via neutron scattering or
various autocorrelation functions [7,14]. Alley and Alder
point out that generalized hydrodynamic models could be
enormously useful and that once the generalized transport
kernels are computed for a given fluid, they can be used in a
variety of hydrodynamic applications at molecular length
scales. Such problems could include studying the stress
response of fluids experiencing shock waves [7,15–18], for
example. In these cases, moment expansions commonly
used in gas kinetic theory are usually applied [11,13].
Expansions of this type, including gradient expansions,
have a limited range of applicability, as we will show later.
It is therefore desirable to consider the entire nonlocal
transport kernel, as we do in this Letter. A nonlocal con-
stitutive equation, expressed as a gradient expansion, was
used by Dhont [19] to explain shear-banding phenomena,
and Masselon et al. [20] have very recently used the same
type of constitutive equation to describe the effect of non-

locality on the velocity profile for Poiseuille flow of mi-
cellar solutions. A further potential application is in highly
confined fluid flow. It is yet to be demonstrated whether
such an approach can be successfully applied to fluids
confined to molecular dimensions due to large density
variations in the fluid [21,22], though we note that nonlocal
constitutive equations have been used in the modelling of
stress in Brownian suspensions of rigid fibers [23].
Similarly, it has recently been demonstrated that classical
continuum elasticity models break down at small length
scales where nonlocal behavior becomes important [24].

Despite the promise of using nonlocal hydrodynamic
models at the molecular length scale, in particular, for
the prediction of thermodynamic fluxes and their use in
generalized Navier-Stokes or Fourier-like equations, we
are unaware of any conclusive proof that such constitutive
models will actually work, or any quantification of the
range of their applicability. In this Letter, we address this
shortfall by simulating a system of atoms interacting via a
purely repulsive short ranged truncated and shifted
Lennard-Jones (Weeks-Chandler-Andersen, WCA) poten-
tial [25] under the influence of a weak sinusoidal transverse
force (STF) such that the fluid density remains constant in
space and the fluid is thermostatted at constant tempera-
ture. Thus, as the fluid is strictly in the Newtonian regime
where shear-thinning can be neglected, the only variations
in the fluid viscosity are due to variations in the wavelength
of the driving force and hence variations in the k-dependent
viscosity (i.e., the nonlocal viscosity). By varying the
wavelength of the spatially oscillatory field, while keeping
all other parameters constant, we are able to test the
validity of either the local or nonlocal constitutive models
for the shear stress by deriving exact analytic expressions
and comparing these predicted stresses with exact stresses
computed directly from the simulation data.

In the case of a homogeneous fluid in a steady state in
which variations in the strain rate are of the order of the
width of the kernel ��y� (i.e., the correlation length), the
nonlocal linear constitutive expression for the shear stress
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�yx is [1,7]

 �yx�y� �
Z 1
�1

dy0��y� y0� _��y0�: (1)

In this expression, the flow geometry is such that the fluid
flows in the x-direction with a velocity gradient in the
y-direction. We note that for strong flows, nonlinear vis-
coelasticity becomes important, in which case this simple
linear constitutive equation is invalid. We do not consider
nonlinear constitutive equations in this Letter.

Consider a three-dimensional fluid flowing in the
x-direction under the influence of a sinusoidally varying
field Fx�y� � F0 coskny in the y-direction, as depicted in
Fig. 1, where kn � 2�n=Ly and Ly is the length of the
simulation box in the y-direction. If the force is sufficiently
small such that the density �0 of the fluid remains constant
and the fluid is in the Newtonian regime (i.e., no shear-
thinning occurs), then the shear stress can be computed
exactly by integrating the governing momentum continuity
equation, and can be readily shown to be [26,27]

 �yx�y� � �
F0�0

kn
sinkny: (2)

The streaming velocity is only excited to the first harmonic
in the weak field limit and is given by

 ux�y� � ~ux�kn� cos�kny� (3)

where ~ux�kn� is the first Fourier coefficient of the series.
Differentiating with respect to y gives the strain rate as

 _� x�y� � �kn~ux�kn� sin�kny�: (4)

We have shown [26] that it is possible to compute the
full inhomogeneous viscosity kernel from correlation func-
tions of the transverse momentum current via equilibrium
molecular dynamics simulations or directly from the STF
method. Both methods lead to identical results. In that

paper, we parameterized the kernel for the WCA fluid
and found that a useful form could be given by the sum
of two Gaussians, namely

 ��y� �
�0

2
�������
2�
p ��1e

���1y�2=2 � �2e
���2y�2=2�: (5)

�0 is the effective viscosity of the liquid and is given by the
integral of Eq. (5), and �1 and �2 are parameters that
depend on density and temperature.

We can now analytically compute the predicted shear
stress using both local and nonlocal linear constitutive
models. In the former case, we use Newton’s constitutive
equation �Lyx�y� � �0 _��y� to give

 �Lyx�y� � �0
~_�0 sinkny (6)

where ~_�0 � �kn~ux�kn�. Similarly, by substituting Eqs. (4)
and (5) into Eq. (1), we find for the latter

 �NL
yx �y� �

�0
~_�0

2
�e��kn=

��
2
p
�1�

2
� e��kn=

��
2
p
�2�

2
� sinkny: (7)

These two predictive analytic expressions for the local
and nonlocal shear stress can now be explicitly tested
against precise numerical values for the shear stress com-
puted from Eq. (2). Our expectation is that Eqs. (6) and (7)
should give close to identical results when the spatial
variation of _��y� is negligible over the width of the kernel
given by Eq. (5), and both these predictions should agree
with the measured simulation stress computed via Eq. (2).
However, when _��y� varies appreciably over the length
scale of the kernel, we expect Eq. (6) to break down,
whereas Eq. (7) should predict the correct stress.

To test out these predictions, we performed nonequilib-
rium molecular dynamics (NEMD) simulations of the STF
system depicted in Fig. 1, where we note that the system is
infinitely periodic in all three dimensions. The simulations
were performed on a fluid of 1700 atoms interacting via the
WCA potential. The length of the simulation box in the
y-direction was Ly � 17:61. Details of the simulations,
including the equations of motion and thermostatting
mechanism to constrain the temperature, are given in
[26]. The parameters used in the simulations and calcula-
tions are all presented in Table I. We stress here that the
kernel was computed by independent equilibrium MD
simulations of the correlation function for the transverse
momentum current, whereas the zero-wave-vector viscos-
ity was computed by the standard Green-Kubo relation.
The reader is referred to [26] for details of the kernel
calculations.
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y
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FIG. 1 (color online). Schematic representation of the STF
simulation cell.

TABLE I. Parameters used in the computation of shear stress.

T �0 F0 �0 �1 �2 kn ~ux�kn�

n � 1 0.765 0.685 0.15 0.929 1.929 4.497 0.357 0.886
n � 10 0.765 0.685 0.225 0.929 1.929 4.497 3.57 0.027
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In Fig. 2, we present the measured stress [Eq. (2)] with
the local and nonlocal predictions given by Eqs. (6) and
(7), respectively, for a system with the longest wavelength
of the excitation force (� � Ly � 17:61). The wave num-
ber n is 1, which gives kn � 0:357. In this case, the
variation of _��y� over the range of the kernel (base width,
� � 3) is negligible (�=�� 0:17). As expected, we find
that both the local and nonlocal predictions for the shear
stress are identical and in excellent agreement with Eq. (2).

This result is now contrasted with the situation where
_��y� does vary appreciably over the kernel range (now
�=�� 1:7). In this case, n � 10 and � � 1:76 �kn �
3:57�. The predicted and measured stresses are displayed
in Fig. 3. Clearly, we see that the local prediction fails
badly, whereas the nonlocal prediction agrees perfectly
with the measured stress. If we define the difference be-
tween the two predictive stresses as ��yx�y� 	 �Lyx�y� �
�NL
yx �y�, we have

 ��yx�y� � �Lyx�y�
�
1�

1

2
�e��kn=

��
2
p
�1�

2
� e��kn=

��
2
p
�2�

2
�

�
:

(8)

This expression shows that, for a fixed point y in space, the
error between the local and nonlocal predictive stresses
increases rapidly with increasing kn and then plateaus. We
plot the term in curly brackets, which we call the error
term, �, in Fig. 4. As an example, the error in the
Newtonian (i.e., Navier-Stokes) approximation reaches
10% when the wavelength of the driving field decreases
to approximately 2� in reduced units. In the limit as kn !
1, the nonlocal stress tends to zero. This is also clearly
seen by examining the exact expression for the measured

stress, given by Eq. (2), but cannot be predicted by the local
Newtonian expression [Eq. (6)]. The amplitude of the shear
stress decreases rapidly as a function of wave vector be-
cause at small wavelengths �
 � , the variations in strain
rate occur on length scales so much smaller than the width
of the kernel that the kernel spans at least an entire wave-
length of the strain rate. This in turn implies that the
weighted contribution of the strain rate is zero. Because
of space restrictions, we have only shown results for one
state point at high fluid density; however, we have per-
formed the same analysis at a number of fluid state points,
and the results are all similarly convincing. We note that
the problem could easily be inverted. By knowing what the
exactly measured shear stress is [via Eq. (2)], we could
predict the streaming velocity profile by substituting the
Fourier transform of Eq. (1) into a generalized Navier-
Stokes equation, finding the solution in k-space and inverse
transforming the solution into real space.
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FIG. 2 (color online). Comparison of exact shear stress com-
puted by Eq. (2) (circles), with the predictions obtained from the
local constitutive model [dashed line, corresponding to Eq. (6)]
and nonlocal model [full line, corresponding to Eq. (7)]. The
excitation force has a long wavelength equal to the length of the
simulation box in the y-direction and corresponds to a wave
number n � 1.
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FIG. 3 (color online). As with Fig. 2, but now for a much
shorter excitation wavelength corresponding to n � 10.
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Finally, we note that Eq. (1) can be expanded about the
strain rate at y � y0 in a Taylor series. Alternatively, one
could take the Fourier transform of Eq. (1) and expand in
k-space about ~��k�, assuming that the kernel in reciprocal
space is analytic about k � 0. Inverse transforming back
into real space gives the expansion of the shear stress.
Either method gives the same expression, which we present
up to second order:

 �yx�y� � �0 _��y� � �1
d _�
dy0

��������y0�y
��2

d2 _�

dy02

��������y0�y
�� � �

(9)

where �0 is as defined above, �1 � �
R
1
�1 y��y�dy � 0

and �2 �
1
2

R
1
�1 y

2��y�dy. For our particular system
(Fig. 1), Eq. (9) leads to

 �yx�y� � �0
~_�0

�
1�

1

4

�
1

�2
1

�
1

�2
2

�
k2
n

�
sinkny: (10)

In the case of the lowest wave vectors n � �1; 2� and a
force of F0 � �0:15; 0:225�, with values of kn �
�0:357; 0:714�, the coefficient of the stress given by
Eq. (10) is (� 0:296, �0:236). This compares well with
the exact values of �0:288 and �0:216 computed via
Eq. (2) and confirms that the gradient expansion can be a
useful approximation to the stress for small wave vectors.
For example, a 10% deviation in stress computed from the
gradient expansion and the exact nonlocal kernel is found
when the wavelength of the driving field is approximately 8
in reduced units (cf. the value of 2� where the Navier-
Stokes approximation gives the same deviation as shown
above).
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